Consumer Confidence Report for Calendar Year 2023

Este informe contiene informactión muy importante sobre el aqua usted bebe. Tradúscalo ó hable con alguien que lo entienda bien.

Public Water System ID Number	Public Water System Name			
AZ04-09091	Canyon Vista Estates			
Contact Name and Title		Phone Number	E-mail Address	
Jason Long, Operator		520-431-7723	jason@longwatermgt.com	

We want our valued customers to be informed about their water quality. If you would like to learn more please contact Jason Long at 520-431-7723.

Drinking Water Sources

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Our water source(s): One well that draws form the Little Colorado River Plateau sub-basin.

Drinking Water Contaminants

Microbial Contaminants: Such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife

Inorganic Contaminants: Such as salts and metals that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming

Pesticides and Herbicides: Such as agriculture, urban storm water runoff, and residential uses that may come from a variety of sources

Organic Chemical Contaminants: Such as synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants: That can be naturally occurring or be the result of oil and gas production and mining activities.

Vulnerable Population

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and microbiological contaminants visit the EPA *Safe Drinking Water website* at www.epa.gov/sdwa.

This PWS did not receive a SWAP because the PWS was either inactive at the time or the PWS did not exist. Further source water assessment documentation can be obtained by contacting ADEQ.

Definitions

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water

Level 1 Assessment: A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria was present

Level 2 Assessment: A very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria was present

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment, or other requirements

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water

Maximum Contaminant Level Goal MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health

Maximum Residual Disinfectant Level (MRDL): The level of disinfectant added for water treatment that may not be exceeded at the consumer's tap

Maximum Residual Disinfectant Level Goal (MRDLG): The level of disinfectant added for treatment at which no known or anticipated adverse effect on health of persons would occur

Minimum Reporting Limit (MRL): The smallest measured concentration of a substance that can be reliably measured by a given analytical method

Millirems per year (MREM): A measure of radiation absorbed by the body

Not Applicable (NA): Sampling was not completed by regulation or was not required

Not Detected (ND or <): Not detectable at reporting limit

Nephelometric Turbidity Units (NTU): A measure of water clarity

Million fibers per liter (MFL)

Picocuries per liter (pCi/L): Measure of the radioactivity in water

ppm: Parts per million or Milligrams per liter (mg/L)

ppb: Parts per billion or Micrograms per liter (µg/L)

ppt: Parts per trillion or
Nanograms per liter (ng/L)ppm x 1000 = ppbppg: Parts per quadrillion orppb x 1000 = ppt

ppq: Parts per quadrillion or	ppb x 1000 = ppt
Picograms per liter (pg/L)	ppt x 1000 = ppq

Lead Informational Statement:

Lead, in drinking water, is primarily from materials and components associated with service lines and home plumbing. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Canyon Vista Estates is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Water Quality Data – Regulated Contaminants

Microbiological (RTCR)	TT Violation Y or N	Number of Positive Samples	Positive Sample(s) Month & Year	MCL	MCLG	Likely Source of Contamination	
E. Coli	N	0	n/a	0	0	Human and animal fecal waste	
Fecal Indicator (coliphage, enterococci and/or E. coli)	N	2	5/2023 & 10/2023	0	0	Human and animal fecal waste	
Lead & Copper	MCL Violation Y or N	90 th Percentile	Number of Samples Exceeds AL	AL	ALG	Sample Month & Year	Likely Source of Contamination
Copper (ppm)	N	0.055 ppm	0	1.3	1.3	6/2022	Corrosion of household plumbing systems; erosion of natural deposits
Lead (ppb)	Ν	0 ppb	0	15	0	6/2022	Corrosion of household plumbing systems; erosion of natural deposits
Radionuclides	MCL Violation Y or N	Running Annual Average (RAA) <u>OR</u> Highest Level Detected	Range of All Samples (Low-High)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination

Alpha Emitters (pCi/L)	N	4 pCi/L	4 – 4 pCi/L	15	0	2/2022	Erosion of natural deposits
Inorganic Chemicals (IOC)	MCL Violation Y or N	Running Annual Average (RAA) <u>OR</u> Highest Level Detected	Range of All Samples (Low-High)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination
Arsenic ¹ (ppb)	Ν	1 ppb	1 – 1 ppb	10	0	2/2022	Erosion of natural deposits, runoff from orchards, runoff from glass and electronics production wastes
Barium (ppm)	Ν	0.14 ppm	0.14 – 0.14	2	2	2/2022	Discharge of drilling wastes; discharge from metal refineries; Erosion of natural deposits
Chromium (ppb)	Ν	1.8 ppb	1.8 – 1.8 ppb	100	100	2/2022	Discharge from steel and pulp mills; Erosion of natural deposits
Fluoride (ppm)	Z	0.075 ppm	0.075 – 0.075 ppm	4	4	2/2022	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate ² (ppm)	Ν	0.27 ppm	0.27 – 0.27 ppm	10	10	2023	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	Ν	13 ppm	13 – 13 ppm	N/A	N/A	2/2022	Erosion of natural deposits

¹ Arsenic is a mineral known to cause cancer in humans at high concentration and is linked to other health effects, such as skin damage and circulatory problems. If arsenic is less than or equal to the MCL, your drinking water meets EPA's standards. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water, and continues to research the health effects of low levels of arsenic.

² Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause "blue baby syndrome." Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider.

Violation Summary (for MCL, MRDL, AL, TT, or Monitoring & Reporting Requirement)

Violation Type	Explanation, Health Effects	Time Period	Corrective Actions
Lead and Copper Rule	System failed to pull samples for the contaminant listed in the period indicated.	6/1/2023 – 9/30/2023	System will correctly sample for contaminant listed in the period allowed to regain compliance and ensure the quality of water in 2024.
Revised Total Coliform Rule	System failed to sample for the contaminant in the period indicated.	6/1/2023 – 6/30/2023	System pulled the contaminant in the following sampling period of July to regain compliance and ensure quality of water.

Please share this information with other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

Water Quality Table – Unregulated Contaminants

Your drinking water was sampled for the presence and concentration of 29 different per- and polyfluoroalkyl substances, some known by the acronyms PFAS, PFOA, PFNA, PFHxS, PFBS, and GenX, a group of contaminants in the final stages of becoming regulated by the EPA. PFAS are man-made chemicals that are resistant to heat, water, and oil. They have been used since the 1940s to manufacture various consumer products, including fire-fighting foam and stain resistant, water-resistant, and nonstick items. Many PFAS do not break down easily and can build up in people, animals, and the environment over time. Scientific studies have shown that exposure to certain PFAS can be harmful to people and animals, depending on the level and duration of <u>exposure</u>.

To learn more about this group of chemicals, we encourage you to read the ADEQ-provided "PFAS 101 Fact Sheet" and to visit the ADEQ website at https://www.azdeq.gov/pfas-resources

* EPA is proposing a Hazard Index MCL to limit any mixture containing one or more of PFNA, PFHxS, PFBS, and/or GenX Chemicals. The Hazard Index considers the different toxicities of PFNA, GenX Chemicals, PFHxS, and PFBS. For these PFAS, water systems would use a hazard index calculation to determine if the combined levels of these PFAS in the drinking water at that system pose a potential risk and require action (Source: EPA Fact Sheet: Understanding the PFAS National Primary Drinking Water Proposal Hazard Index).

The following contaminants were tested for May, 2023 and were not detected in the water:

11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS), 1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS),

1H, 1H, 2H, 2H-perfluorohexane sulfonic acid (4:2 FTS), 1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS),
4,8-dioxa-3H-perfluorononanoic acid (ADONA), 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS),
hexafluoropropylene oxide dimer acid (HFPO-DA) (GenX), nonafluoro-3,6-dioxaheptanoic acid (NFDHA),
Perfluoro-3-methoxypropanoic acid (PFMPA), Perfluoro-4-methoxybutanoic acid (PFMBA),
Perfluorobutanesulfonic acid (PFBS), Perfluorobutanoic acid (PFBA), Perfluorodecanoic acid (PFDA),
Perfluorododecanoic acid (PFDoA), Perfluoroheptanesulfonic acid (PFHpS), Perfluoroheptanoic acid (PFHpA),
Perfluorohexanesulfonic acid (PFHxS), Perfluorohexanoic acid (PFHxA), Perfluorononanoic acid (PFNA),
Perfluorooctanesulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Perfluoropentanesulfonic acid (PFPeS),
Perfluoropentanoic acid (PFPeA), Perfluoroundecanoic acid (PFUnA), n-ethyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA), Perfluorotetradecanoic acid (PFTA) and

Perfluorotridecanoic acid (PFTrDA).

Tier 3 Public Notice for the Missed Monitoring:

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During 6/1 – 6/31/2023 we did not monitor or test for Total Coliform Bacteria (& E. Coli) and therefore cannot be sure of the quality of your drinking water during that time.

The Revised Total Coliform Rule (RTCR) seeks to prevent waterborne disease cause by E. coli. E. Coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During 2023 we did not monitor or test for Lead and Copper and therefore cannot be sure of the quality of our drinking water during that time. We were required to take 5 sample per year.

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.

What should I do?

There is nothing you need to do at this time. You do not need to boil your water or take other corrective actions. You may continue to drink the water. If a situation arises where the water is no longer safe to drink, you will be notified within 24 hours. We will announce any emergencies on ABC 15 Phoenix We will also post this information on our website at www.sumwater.com

What is being done?

Sampling was subsequently done on 7/19/2023 with negative results. Lead/Copper sampling will be completed as required in 2024.

For more information, please contact Jason Long at 520-431-7723 or at jason@longwatermgt.com