Consumer Confidence Report for Calendar Year 2023

Este informe contiene informactión muy importante sobre el aqua usted bebe. Tradúscalo ó hable con alguien que lo entienda bien.

Public Water System ID Number	Public Water System Name				
AZ04-13202	Coldwater Canyon 3				
Contact Name and Title		Phone Number	E-mail Address		
Jason Long, Operator		520-431-7723	jason@longwatermgt.com		

We want our valued customers to be informed about their water quality. If you would like to learn more, please contact Jason Long at 520-431-7723.

Drinking Water Sources

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Our water source(s): Wells that draw from the Agua Fria Aquifer

Drinking Water Contaminants

Microbial Contaminants: Such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife

Inorganic Contaminants: Such as salts and metals that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming

Pesticides and Herbicides: Such as agriculture, urban storm water runoff, and residential uses that may come from a variety of sources

Organic Chemical Contaminants: Such as synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants: That can be naturally occurring or be the result of oil and gas production and mining activities.

Vulnerable Population

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and microbiological contaminants visit the EPA *Safe Drinking Water website* at www.epa.gov/sdwa.

Source Water Assessment

Based on the information currently available on the hydrogeologic settings of and the adjacent land uses that are in the
specified proximity of the drinking water source(s) of this public water system, the department has given a low risk
designation for the degree to which this public water system drinking water source(s) are protected. A low risk
designation indicates that most source water protection measures are either already implemented, or the hydrogeology
is such that the source water protection measures will have little impact on protection.

Further source water assessment documentation can be obtained by contacting ADEQ.

Definitions

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water

Level 1 Assessment: A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria was present

Level 2 Assessment: A very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria was present

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment, or other requirements

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water

Maximum Contaminant Level Goal MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health

Maximum Residual Disinfectant Level (MRDL): The level of disinfectant added for water treatment that may not be exceeded at the consumer's tap

Maximum Residual Disinfectant Level Goal (MRDLG): The level of disinfectant added for treatment at which no known or anticipated adverse effect on health of persons would occur

Minimum Reporting Limit (MRL): The smallest measured concentration of a substance that can be reliably measured by a given analytical method

Millirems per year (MREM): A measure of radiation absorbed by the body

Not Applicable (NA): Sampling was not completed by regulation or was not required

Not Detected (ND or <): Not detectable at reporting limit

Nephelometric Turbidity Units (NTU): A measure of water clarity

Million fibers per liter (MFL)

Picocuries per liter (pCi/L): Measure of the radioactivity in water

ppm: Parts per million or Milligrams per liter (mg/L) **ppb**: Parts per billion or Micrograms per liter (μg/L)

ppt: Parts per trillion or

Nanograms per liter (ng/L)

ppm x 1000 = ppb

ppq: Parts per quadrillion or Picograms per liter (pg/L)

ppb x 1000 = ppt

ppt x 1000 = ppq

Lead Informational Statement:

Lead, in drinking water, is primarily from materials and components associated with service lines and home plumbing. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Coldwater Canyon 3 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Water Quality Data - Regulated Contaminants

Microbiological (RTCR)	TT Violation Y or N	Number of Positive Samples	Positive Sample(s) Month & Year	MCL	MCLG	Likely So	urce of Contamination	
E. Coli	N	0	n/a	0	0	Human and animal fecal waste		
Total Coliform (coliphage, enterococci and/or E. coli)	N	4	4/2023	0	0	Human and	Human and animal fecal waste	
Disinfectants	MCL Violation Y or N	Running Annual Average (RAA)	Range of All Samples (Low-High)	MRDL	MRDLG	Sample Month & Year	Likely Source of Contamination	
Chlorine/Chloramine (ppm)	N	1	0.1 – 1 ppm	4	4	2023	Water additive used to control microbes	
Lead & Copper	MCL Violation Y or N	90 th Percentile	Number of Samples Exceeds AL	AL	ALG	Sample Month & Year	Likely Source of Contamination	
Copper (ppm)	N	0.23 ppm	0	1.3	1.3	8/2021	Corrosion of household plumbing systems; erosion of natural deposits	

Inorganic Chemicals (IOC)	MCL Violation Y or N	Running Annual Average (RAA) OR Samples Highest Level (Low-High) Detected		MCL	MCLG	Sample Month & Year	Likely Source of Contamination
Arsenic¹ (ppb)	N	6 ppb	2.8 – 6 ppb	10	0	2023	Erosion of natural deposits, runoff from orchards, runoff from glass and electronics production wastes
Barium (ppm)	N	0.018 ppm	0.018 – 0.018 ppm	2	2	8/2022	Discharge of drilling wastes; discharge from metal refineries; Erosion of natural deposits
Fluoride (ppm)	N	0.31 ppm	0.31 – 0.31 ppm	4	4	8/2022	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate² (ppm)	N	3.4 ppm	3.4 – 3.4 ppm	10	10	2023	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

¹ Arsenic is a mineral known to cause cancer in humans at high concentration and is linked to other health effects, such as skin damage and circulatory problems. If arsenic is less than or equal to the MCL, your drinking water meets EPA's standards. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water, and continues to research the health effects of low levels of arsenic.

Water Quality Table - Unregulated Contaminants

Your drinking water was sampled for the presence and concentration of 29 different per- and polyfluoroalkyl substances, some known by the acronyms PFAS, PFOA, PFNA, PFHxS, PFBS, and GenX, a group of contaminants in the final stages of becoming regulated by the EPA. PFAS are man-made chemicals that are resistant to heat, water, and oil. They have been used since the 1940s to manufacture various consumer products, including fire-fighting foam and stain resistant, water-resistant, and nonstick items. Many PFAS do not break down easily and can build up in people, animals, and the environment over time. Scientific studies have shown that exposure to certain PFAS can be harmful to people and animals, depending on the level and duration of exposure.

To learn more about this group of chemicals, we encourage you to read the ADEQ-provided "PFAS 101 Fact Sheet" and to visit the ADEQ website at https://www.azdeq.gov/pfas-resources

Per- and Polyfluoroalkyl Substances	Highest Level Detected	Range of All Samples	Proposed MCL
PFOA (in parts per trillion)	n/a	n/a	4.0 ppt
PFOS (in parts per trillion)	n/a	n/a	4.0 ppt
PFNA (in parts per trillion)	n/a	n/a	N/A*
PFHxS (in parts per trillion)	n/a	n/a	N/A*
PFBS (in parts per trillion)	2.09 NG/L	2.09	N/A*
GenX (in parts per trillion)	n/a	n/a	N/A*
Calculated Hazard Index (HI)	n/a		1 (no units)

^{*} EPA is proposing a Hazard Index MCL to limit any mixture containing one or more of PFNA, PFHxS, PFBS, and/or GenX Chemicals. The Hazard Index considers the different toxicities of PFNA, GenX Chemicals, PFHxS, and PFBS. For these PFAS, water systems would use a hazard index calculation to determine if the combined levels of these PFAS in the drinking water at that system pose a potential risk and require action (Source: EPA Fact Sheet: Understanding the PFAS National Primary Drinking Water Proposal Hazard Index).

Water Quality Table - Unregulated Contaminant Monitoring Rule (Required Reporting)

Twenty-nine Per- and Polyfluoroalkyl Substances (In parts per trillion)	Detected (Y/N)	Average of Results (ppt)	Range of All Samples (Low-High)	Minimum Reporting Level (ppt)	Analytical Methods
11-chloroeicosafluoro-3-oxaundecane- 1-sulfonic acid (11Cl-PF3OUdS)	N	n/a	n/a	5	EPA 533
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	N	n/a	n/a	5	EPA 533

² Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause "blue baby syndrome." Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider.

1H, 1H, 2H, 2H-perfluorohexane sulfonic acid (4:2 FTS)	N	n/a	n/a	3	EPA 533
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	N	n/a	n/a	5	EPA 533
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	N	n/a	n/a	3	EPA 533
9-chlorohexadecafluoro-3-oxanone-1- sulfonic acid (9CI-PF3ONS)	N	n/a	n/a	2	EPA 533
hexafluoropropylene oxide dimer acid (HFPO-DA) (GenX)	N	n/a	n/a	5	EPA 533
nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	N	n/a	n/a	20	EPA 533
Perfluoro-3-methoxypropanoic acid (PFMPA)	N	n/a	n/a	3	EPA 533
Perfluoro-4-methoxybutanoic acid (PFMBA)	N	n/a	n/a	4	EPA 533
Perfluorobutanesulfonic acid (PFBS)	N	n/a	n/a	3	EPA 533
Perfluorobutanoic acid (PFBA)	Υ	2.09	2.09	5	EPA 533
Perfluorodecanoic acid (PFDA)	N	n/a	n/a	3	EPA 533
Perfluorododecanoic acid (PFDoA)	N	n/a	n/a	3	EPA 533
Perfluoroheptanesulfonic acid (PFHpS)	N	n/a	n/a	3	EPA 533
Perfluoroheptanoic acid (PFHpA)	N	n/a	n/a	3	EPA 533
Perfluorohexanesulfonic acid (PFHxS)	N	n/a	n/a	3	EPA 533
Perfluorohexanoic acid (PFHxA)	N	n/a	n/a	3	EPA 533
Perfluorononanoic acid (PFNA)	N	n/a	n/a	4	EPA 533
Perfluorooctanesulfonic acid (PFOS)	N	n/a	n/a	4	EPA 533
Perfluorooctanoic acid (PFOA)	N	n/a	n/a	4	EPA 533
Perfluoropentanesulfonic acid (PFPeS)	N	n/a	n/a	4	EPA 533
Perfluoropentanoic acid (PFPeA)	N	n/a	n/a	3	EPA 533
Perfluoroundecanoic acid (PFUnA)	N	n/a	n/a	2	EPA 533
n-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	N	n/a	n/a	5	EPA 537.1
n-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	N	n/a	n/a	6	EPA 537.1
Perfluorotetradecanoic acid (PFTA)	N	n/a	n/a	8	EPA 537.1
Perfluorotridecanoic acid (PFTrDA)	N	n/a	n/a	7	EPA 537.1
One Metal	Detected (Y/N)	Average	Range of All Samples (Low-High)	MRL (ppb)	Analytical Methods
Lithium (ppb)	N	n/a	n/a	9 μg/L	EPA 200.7, SM 3120 B, ASTM D1976– 20